Phase 2 - 10 - M-1A rocket with liquid rocket boosters (1967)
Phase 2 - 10
[note: this post has been retconned - original rocket configuration here]
To launch a human into space, HASDA needed a larger launch vehicle. The M-1A rocket featured the addition of two liquid rocket boosters (LRBs) using the same LE-04 engine (without vernier engines), a larger second stage using the upgraded LE-03B engine with a larger vacuum-optimized nozzle burning Aerozine-50 and nitrogen tetroxide, and a larger fairing that all had the same diameter as the first stage. The tanks used a lighter aluminum-copper alloy. This quadrupled the mass that could be carried to low Earth orbit from 700 to 2800 kilograms. The M-1A was thus nicknamed "Thor Heavy" or "Thor Multibody" in the United States. The original military purpose of the LE-04 liquid oxygen/kerosene engine was superseded by solid-fuel motors that were easier to store and didn't need to be fueled briefly before launch. However, the M-1A did not use solid rocket boosters (SRBs) unlike its American Thor-Delta counterparts, as they could not be stopped once ignited, unlike liquid-fuel rocket engines which were deemed safer for crewed missions. The LRBs had tanks that were 2 meters shorter than the central first stage to enable an earlier shedding of weight to increase performance (as the engines could not throttle), and decrease maximum acceleration to 9 Gs at booster separation, which was nearing the limit of what a trained person could handle without losing consciousness. The M-1A could also launch without boosters, with an LEO payload of 900 kilograms. The third stage used theLE-03 engine of the Negi-2A and 2B rockets same LE-03B engine instead of a solid motor for more flexibility in mission planning and operations. It could boost payloads up to 800 900 kilograms to geostationary transfer orbit, or 500 600 kilograms to the Moon. Conducting a flyby of Mars or Venus might also be possible.
1967-01-25 - The first M-1A lifted off carrying the Neginohana-2, a designation used for engineering test satellites. Neginohana-2 tested a new 2-meter-diameter satellite bus and parabolic dish communications system. The satellite was only launched to an elliptical geostationary transfer orbit, and did not have enough propellant to reach the circular geostationary orbit.
LRB separation
First stage separation
Fairing separation
Third stage burn
Neginohana-2 at apogee
[note: this post has been retconned - original rocket configuration here]
To launch a human into space, HASDA needed a larger launch vehicle. The M-1A rocket featured the addition of two liquid rocket boosters (LRBs) using the same LE-04 engine (without vernier engines), a larger second stage using the upgraded LE-03B engine with a larger vacuum-optimized nozzle burning Aerozine-50 and nitrogen tetroxide, and a larger fairing that all had the same diameter as the first stage. The tanks used a lighter aluminum-copper alloy. This quadrupled the mass that could be carried to low Earth orbit from 700 to 2800 kilograms. The M-1A was thus nicknamed "Thor Heavy" or "Thor Multibody" in the United States. The original military purpose of the LE-04 liquid oxygen/kerosene engine was superseded by solid-fuel motors that were easier to store and didn't need to be fueled briefly before launch. However, the M-1A did not use solid rocket boosters (SRBs) unlike its American Thor-Delta counterparts, as they could not be stopped once ignited, unlike liquid-fuel rocket engines which were deemed safer for crewed missions. The LRBs had tanks that were 2 meters shorter than the central first stage to enable an earlier shedding of weight to increase performance (as the engines could not throttle), and decrease maximum acceleration to 9 Gs at booster separation, which was nearing the limit of what a trained person could handle without losing consciousness. The M-1A could also launch without boosters, with an LEO payload of 900 kilograms. The third stage used the
1967-01-25 - The first M-1A lifted off carrying the Neginohana-2, a designation used for engineering test satellites. Neginohana-2 tested a new 2-meter-diameter satellite bus and parabolic dish communications system. The satellite was only launched to an elliptical geostationary transfer orbit, and did not have enough propellant to reach the circular geostationary orbit.
LRB separation
First stage separation
Fairing separation
Third stage burn
Neginohana-2 at apogee
Last edited: