What If - Finland had been prepared for the Winter War?

Silly thought, but you could throw my brothers father in law in in acameo.

Alf kabzems was latvian - in the baltic area, but not finnish, of course. If you want to google bim, his recent obit is in lots of places, including the globe and mail.
 
Silly thought, but you could throw my brothers father in law in in acameo.

Alf kabzems was latvian - in the baltic area, but not finnish, of course. If you want to google bim, his recent obit is in lots of places, including the globe and mail.

Did a quick google and yes, no problems with a Cameo. I was planning on doing something with Latvia and I can work something in. I'll msg you offline on that one.

Anyone else who wants a cameo is more than welcome and I'll try and work these in. No guarantees as to when tho. - and Private Msg me if you're interested.....
 
Going slightly off-track into a sidebar here for a single Post

Lightweight Body Armor for the Maavoimat

Reported in “The Times” London (UK), 23 October 1940. In March 1940, Sotamies (Private) Arto Luhtala survived a Soviet mortar shell landing ten feet away from him. The explosion threw him into the air, but he suffered nothing more serious than a badly bruised chest. Sotamies Luhtala told this reporter at the time that “another soldier on the same patrol stopped six burp-gun slugs with his jacket. All he got out of it was a couple of bruises.” The reason they both survived without serious injury has up until now been a military secret closely guarded by the Finnish Army – lightweight body armour of an innovative design with which most Finnish soldiers fighting on the frontlines are equipped. However, now that the Winter War is over and a Peace Treaty with the Soviet Union has been signed, this closely guarded military secret can now be revealed – and the Finnish Government has approached our military with an offer to sell the design to our Army. An offer that our Government has shamefully declined, to the disgust of this Reporter who saw how effective it was during the fighting in the Winter War. One can only surmise the reasons behind our military’s decision.”

This was the only news report on the Maavoimat’s innovative Lightweight Body Armor that saw the light of day. The Maavoimat had ensured strict censorship on foreign reporters based in Finland throughout the Winter War and no reports of this useful piece of equipment emerged during the fighting. The Reporter who wrote this short piece for The Times unfortunately died in an unfortunate accident in the London Underground two days after the short article appeared in The Times. However, it can now, many years later, be revealed that the Suomen Maavoimat had in fact introduced with some success an innovative and effective Lightweight Body Armor that was widely used by their soldiers both in the Winter War, throught the remainder of WW2 and into the 1950’s. This story is a living example of the splendid cooperation, interchange of information, and integration of efforts on the part of the Maavoimat, the Finnish Forest Product manufacturers and Neste (the Finnish Oil Refining company which had branched out in the late 1930’s to include the manufacturing of Chemicals) in the development of a superior instrument of warfare. It is one in which we can all take a great deal of pride; members of the military, members of industry, and Finnish taxpayers alike.

It pertains to the development and use of non-metallic body armor - a highly engineered and designed combination of wood, resin and plastics developed by a team of researchers from various Finnish forest product manufacturers over the years 1936-1938. In the early 1930’s, the Maavoimat had begun a study of casualties in WWI, largely sourcing British and French investigations from the period of the war itself. Studies of casualties of British forces through 1916 indicated that more than three-quarters of the wounded men could have been saved if some form of armor had been worn. A large preponderance of wounds derived from fragmentation-type weapons (either shrapnel or shell fragment). Studies of French casualties showed that 60 to 80 percent of all wounds were produced by missiles of low to medium velocity.

The Maavoimat also investigated the work that had been done on WW1 body armour to protect against shrapnel or shell fragments. The British had developed a silk-lined necklet which was purported to stop a 230-grain pistol ball at 600 f.p.s. However, the primary materials, extremely difficult to obtain, had deteriorated very rapidly under combat conditions and were considered costly ($25). In addition, the British also studied a 6-pound body shield that was approximately 1 inch thick and was made of many layers of linen, cotton, and silk hardened by a resinous material. During World War I, the United States had also developed several types of armor. One, the Brewster Body Shield, was made of chrome nickel steel, weighed 40 pounds, and consisted of a breastplate and a headpiece. This armor would withstand Lewis machinegun bullets at 2,700 f.p.s. but was unduly clumsy and heavy.

The Maavoimat came up with an initial “body armour jacket” that was made up of steel plates sown into a cloth vest that hung over the shoulders to protect the chest and stomach but this was, as could be expected, rather too bulky and at 30lbs, very heavy, was incompatible with standard items of equipment, and tended to restrict the mobility of the soldier. It did stop low velocity shrapnel, but not pistol, rifle or machinegun bullets. However, it was decided that the project should continue, albeit with a low level of funding and in 1935, the Maavoimat issued a secret research contract for the development for effective lightweight body armor for our Finnish soldiers. Our Forestry Industry responded to the challenge by putting together a team of our leading research and development scientists who accepted this challenge with zeal and determination. The willingness of these companies to pool their efforts into one single military program is indicative of the genuine spirit of cooperation developed between the military and industry in the years before the Winter War.

In May 1937, the R&D Team laminated a mixture of fibrous wood and bakelite in a special manner which provided encouraging ballistic values. After this initial success, the R&D Team was authorized to intensify its research program. It thoroughly investigated the bonding properties of all available resins together with the production of high-strength plywood and wood pulp mixtures, together with the best types of fabric weaves and metallic meshs to provide greater strength and lamination together with fabrication processes to provide optimum results. The end result was, by mid-1938, a wood, phenolic resin and fine metallic mesh laminate of some 20 different layers. The phenolic laminate was made by impregnating layers of different base material (in this case both a wood pulp mix similar to but far stronger than paper and silk) with phenolic resin and laminating layers of the resin-saturated base materials under heat and pressure. The resin was fully polymerized (cured) during this process. The phenolic laminate sheets were then laminated with sheets of a thin wood-resin mix and a fine metallic (steel) mesh in multiple layers which were then pressed using 1,800 tons of heated pressure that fused everything into a super-resistant, quarter-inch-thick panel. The plates were approximately 1/4 inch thick and cut into five inch squares which were then inserted into pockets in a canvas vest that covered the front and back portions of the torso as well as the shoulders. The vest weighed approximately 8-10 pounds. The plates could be molded to fit the contours of the chest or back and the design of the vest using curved to conform with the contours of the body.

08092308295335735253249.jpg

Maavoimat Body Armour – introduced on a large scale starting in 1939

14sny3d.jpg

The Wood Fibre / Phenolic Resin / Metallic Mesh / Glue Plates which were inserted into pockets in the Canvas Vest

The Maavoimat reported after extensive trials: "Although tree wood may not seem like the most impenetrable defense for soldiers, when combined with resins and glues it creates a sturdy shield against exploding mortar fragments. It will not stop direct fire from rifle or machinegun bullets, but it will protect against ricochets, slow-moving shrapnel and grenade and mortar fragments.” Such was the confidence of the Maavoimat evaluation team that in a demonstration to senior officers of the GHQ, one of the team fired a .45 caliber pistol at another member of the team wo was wearing the armor in order to demonstrate its effectiveness. As a result of the demonstrations and the evaluation reports, the Maavoimat ordered large scale production of the vests. By late 1939, enough were available to equip some 50,000 Maavoimat soldiers and with the outbreak of the Winter War, production was stepped up considerably. There was never enough body armour to equip all front-line soldiers – and many soldiers did not like wearing the armor as they felt it restricted movement too much. Overall however, the body armor saved a considerable number of lives and both the military and the participating companies of the forestry and chemical industries have been more than rewarded by the knowledge that these body-armor jackets returned many of our Maavoimat soldiers to their families who otherwise would have been listed "Killed in Combat."

During the Winter War, efforts were concentrated on manufacturing the Body Armour on a large scale. After the War ended in September 1940, R&D continued and it was found that the overall strength of the laminate could be improved through the use of a thin steel plate (rather than the steel mesh previously used (to which the laminate was bonded). It also proved possible to increase the protection offered by using smaller plates (2 inches wide and circular rather than the original 5 inches and square) and overlapping these in a manner similar to old-fashioned scale armour. This was found to be far more flexible for the wearer and could absorb more damage, offering greater protection to the wearer. Tests showed that this armour could withstand direct impacts from lower velocity rifle bullets. Although it was also far more expensive and harder to work, in 1942, this armour was put into mass production. By the time Finland entered WW2, the Maavoimat’s front-line soldiers (and many of the Allied troops now present in Finland) were fully equipped with the new “Lohikäärme Vuota” as it had come to be called.

tacnsgfront.jpg

The Maavoimat’s “Lohikäärme Vuota”

In addition to the now-standard Chest, Back and Side protecting Vest, the laminate was used for the manufacture of lighter helmets – something that the soldiers appreciated. Additional pieces were also designed for the protection of extremities – shoulder plates, as well as neck, leg, knee, arm and elbow protectors and pieces for use in specially designed gloves. These additional pieces of protection were largely used when the Maavoimat was mounting all-out attacks and were otherwise largely carried in the Armoured Fighting Vehicles and Trucks rather than by the soldiers themselves, being issued when appropriate. The end result was that in Finland’s involvement in the war against the German Reich, Maavoimat casualties were significantly lower than those experienced by every other Army involved in the War. The combination of the Maavoimat’s superb tactical skills, outstanding weapons, Finnish Sisu and inherent aggressiveness (name another country that idolizes knife fighters if you can…) together with the sense of invulnerability given by the use of “Lohikäärme Vuota” made the Maavoimat soldiers the most feared in Europe as they charged into battle screaming the old war-cry of “Hakkaa päälle,” last heard in Germany during the Thirty Years War when the Finnish Cavalry of Gustavus Adolphus terrorized the battlefield (the alternative battle cry, generally when on the defensive, was the equally feared “Tulta munille!" which translates roughly as "Fire at their balls!").

To the American soldiers fighting alongside the Maavoimat against Germany, the Lohikäärme Vuota armour together with their strange looking rifles, submachineguns, hand-held mortar-guns (aka grenade launchers) and armoured fighting vehicles made the Finnish soldiers look like something from a Buck Rogers cartoon. However, once they and the British saw how effective the Maavoimat’s equipment was, they did their level best to acquire it against the express orders of their own senior commanders (the Maavoimat of course equipped the Polish and Estonian forces fighting with them of their own accord – and later the Latvian volunteers that joined as Latvia was retaken). To start with this led to a thriving black market, but once the Maavoimat clicked as to what was happening a decision was made that in return for hard cash (US Dollars or Pounds Sterling Kiitos), American and British soldiers were allowed to buy equipment directly from Maavoimat supply units. This had three direct results – hard foreign exchange for the Finns, lower numbers of allied casualties for the Maavoimat medical units to deal with and reduced casualties for the Allied Forces fighting under the Maavoimat’s overall command.
 
Interesting twist...

Phenolic compounds are currently a big field of research in the forest industry right now due to their ability to mold in to high strength parts. Several car companies are looking at them for parts such as bumpers due to the weight savings...
 
Aha. You introduced DragonSkin body armor about 65-70 years early? Would modern DragonSkin be able to stand up to an 8x57mm IS bullet? I doubt that. 9mm, no contest. Would be stopped cold.

Anyway, screw the ammo, I know the perfect counter: "Go for the eyes, Boo! Go for the eyes!" :D
 
Last edited:
Interesting twist...

Phenolic compounds are currently a big field of research in the forest industry right now due to their ability to mold in to high strength parts. Several car companies are looking at them for parts such as bumpers due to the weight savings...

Fun doing the research too. I started with Bakelite (early phenolic resin, isolated first in 1907) so there's nothing that wasn't there in the mid to late 1930's - and indeed, the Brits were experiementing with resin-impregenated cloth mixes in WW1. All within the bounds of the technology at the time :D

Aha. You introduced DragonSkin body armor about 65-70 years early? Yet again, no butterflies? ;)

Ahhh-haaa - you picked up on the Finnish version of the name :D

But no butterflies in the greater scheme of things, it's based on the "Doron Plate" - a fibreglass bases laminate developed in 1943 fpr which the Marine Corps obtained appropriations to equip a full battalion with this body armor for landing operations. Doron panels were sewn into standard utility jackets and first used in the last stages of Okinawa in 1944. As with a few other things here and there, I've moved the date up just a bit and widened the use a little.

Anyway, I know the counter to that: Go for the eyes, Boo! Go for the eyes! :D

And funnily enough, that's been the results of most of the studies. Doesn't save you against head shots...:eek:
 
Last edited:
Ahhh-haaa - you picked up on the Finnish version of the name :D

And funnily enough, that's been the results of most of the studies. Doesn't save you against head shots...:eek:

Nope, I read an article somewhere about DragonSkin or I saw a TV documentation, dunno. The interlocked scales gave you away, my Finnish is limited to 4 or 5 words ;)

And no reaction to my Baldur's Gate 2 quote? Bah :p
 
FYI, for anyone that's following this, it'll be about a week before I post another update (probably around August 29th). Got a lot on at work this week and not a lot of spare time so come back and check then.

Kiitos..........Nigel
 
Tools, Mechanisation and Transportation in the Finnish Forestry Industry

Tools, Mechanisation and Transportation in the Finnish Forestry Industry

Prior to mechanization, logging was a highly manual task requiring a large labour force to achieve any substantial volume output of timber or of timber products such as tar. Tools and techniques changed very little between the 15th and the 20th centuries as the following picture illustrates.

lres10011.jpg

A 15th-century tapestry work illustrating forestry techniques, which includes tree felling and cutting with an ax, cutting of time using a frame saw, and various other aspects of forestry work.

Logging was generally seasonal work and many of the loggers in Finland were small farmers, working their farms during the spring, summer and autumn months and supplementing their income by working as loggers in winter, either on their own wood lots or for the larger forestry companies. The division of labor in logging camps led to several specialized jobs on logging crews, such as whistle punk, chaser, and high climber. (I’m using North American terminology here bcase I don’t know the Finnish names for these jobs, but the general breakdown within the forestry industry was pretty much identical world-wide). The whistle punk's job was to sound a whistle as a signal to the yarder, who controlled the movement of logs and acted as a safety lookout. A good whistle punk had to be alert and think fast as the safety of the others depended on him. The high climber (also known as a tree topper) used iron climbing hooks and rope to ascend a tall tree in the landing area of the logging site, where he would chop off limbs as he climbed, chop off the top of the tree, and finally attach pulleys and rigging to the tree so it could be used as a spar so logs could be skidded into the landing.

High climbers and whistle punks were only phased out in the 1960s to early 1970s when portable steel towers replaced spar trees and radio equipment replaced steam whistles for communication. The chokersetters attached steel cables (or chokers) to downed logs so they could be dragged into the landing by the yarder. The chasers removed the chokers once the logs were at the landing. Chokersetters and chasers were often entry-level positions on logging crews, with more experienced loggers seeking to move up to more skill-intensive positions such as yarder operator and high climber, or supervisory positions such as hooktender. Despite the common perception that all loggers cut trees, the actual felling and bucking of trees were also specialized job positions done by fallers and buckers.

It was only in the very late 19th and early 20th century that new tools such as the two-person broad-bladed saw introduced from North America and then Sweden began to be used for felling large-diameter trees. This saw was also used for bucking the trunks into transportable lengths. Later on, a one-man manual saw with a narrow blade with wooden frames was developed in Finland for small dimension trees. Both saw logs and pulpwood were manually peeled of bark in the forests with simple tools And even with the new tools, it was a hard life – back-breaking manual labour felling, debarking and bucking the trees and moving the timber to collection points in winter using horse and sleighs, then running the logs down waterways to the sawmills in the Spring.

puutakaatamassa.jpg

I - Logging with a two-handed saw – early 1900’s

lres5550.jpg

II - Logging with a two-handed saw – early 1900’s

loggingfinlandearly1900.jpg

Tukkipuun kaatoa 1900-luvun alussa / Logging in Finland in the early 1900s

lres12445.jpg

Metsätöissä Talvella / Working in the forest in winter

work03375.jpg

Bucking and limbing a felled tree, circa 1890. Limbing removed the branches while bucking cut the logs into movable lengths which made it easier to lift the logs onto sleighs and slide them into the water.

lres5328.jpg

Puunkuorinta petkeleellä eli teräsimellä Valamanjoen varressa Jongunjoen hoitoalueella / Using Wood Chisels to peeling bark from the logs, Mella River Valaman Jongunjoen treatment area

lres5548.jpg

Naispuolinen savottalainen kaataa puunrunkoa pokasahalla sahaamalla lumisessa metsässä / Woman using a frame saw

lres11775.jpg

Metsätyömiesten vanhempia kämppiä Karjalassa, lähellä Venäjän rajaa. Karjala; / Forest workmen lived in Logging Camps in the woods – these are older cabins in Karelia, near the Russian border.

Even in the early days of industrial logging, care was often taken to selectively log, with specific trees selected and marked for felling during the Summer and Autumn. The “stampers” would select timber stands and specific trees for their employers, estimate how many board feet of lumber the trees would produce and then map the location for the logging teams. Logging gangs would then move through in the winter, felling and collecting the selected trees and leaving the remainder to continue growing.

lres12852.jpg

Metsänhoidollista leimausta Saarikon metsässä Laukaassa / Stamping marks on selected trees, Laukaa

After the trees were felled and cut into transportable lengths came the hard work of actually moving them to collection points. Before mechanization, these collection points were usually on waterways where the logs could be rolled into the water in Spring. The timber was felled and moved over the winter months, when the snow and ice made transport by horse-drawn sled easy (relatively speaking, of course). Ice roads were often used to transport the logs as the solid ice base made the transport of heavy loads of timber faster and more effective. Building and maintaining the ice roads was a large scale task, requiring teams of horses and men to plough and pack the snow, form the ice (using water tanks mounted on horse-drawn sleds to sprinkle water on the hard-packed snow) and keep the ice roads clear over winter. Ice road maintenance was often carried out at night when the roads weren’t being used to transport timber. The size of the loads that could be pulled by horses on these ice roads was quite astounding, as can be seen in one of the following photos.

lres12272.jpg

1928: "Lohkottaista paljaaksihakkausta kaistaleittain. Huomaa eri puutavaralajit." "Nk. reunahakkauksen (?) ensimmäinen aste. Kapea kaistale on hakattu nuorennettavassa metsikössä, alkaen vasemmalla (pohjoispuolella) näkyvästä nuoremman metsikön rajasta. Tukit viety talvella, paperipuut ja halot hakattu seuraavana keväänä." Metsätaloudellisen valistustoimiston postikortti numero 35. Nuutajärven kartano, Urjala, Pirkanmaa. / Blocks of stacked logs. Note the different types of wood. A narrow strip of forest has been clear-cut, on the left (north) is the boundary of some younger forest. The logs were felled and stacked during the winter, then transported to sawmills and paper mills in the following spring." Forest Office of Financial Education Postcard Mumber 35, Nuutajärvi Manor, Urjala, Pirkanmaa.

lres11765.jpg

Jäätien Kunnossapitoa Avonaisella Rämeellä / Ice road maintenance using an open Sleigh

lres11768.jpg

Jäätien kunnossapitoon tarkoitettu tiehöylä (tieaura?) avonaisella rämeellä / A Horse-drawn Grader used for Ice road maintenance - an open sleigh

lres7664.jpg

Jäätien tekoa Ukonjoella. Hevonen vetää vesity slaatikkoa, jonka päällä istuu kaksi miestä. Pielisjärvi (Lieksa), Pohjois-Karjala / Ice road-making. The horse pulls a sled-mounted water tank used for spraying water onto the ice road, on top of which sit two men. Pielinen (Lieksa), North Karelia

equipment04375.jpg

The sprinkling crews usually worked at night or on Sundays when the ice roads were not used by the logging sleighs

equipment03375.jpg

Water tanks (also called water wagons or water sleighs) could hold as much as 3,000 gallons of water. When plugs at the rear of the tank were pulled, water splashed onto the ice covered logging road making smooth ice for the logging sleighs to pass over.

791pxloggingfinland1938.jpg

Metsätyötä hevosen avulla vuonna 1938 / Logging in Finland using a horse in 1938

work12375.jpg

A load of logs being hauled by a four horse hitch to the log landing, where they will be sent on the river in Spring

loads01375.jpg

“Picture loads” were constructed by logging camps in informal contests to see which camp could load and haul the largest load. These loads were usually constructed annually in the late winter at the end of the logging season when the ice roads were at their slickest. Records were kept informally each year and were a source of pride for logging companies and lumberjacks alike. Called "picture loads" photographers were called in to document the loads. Normal sleigh loads were about 5,000 board feet. The load in this photo consisted of 31,480 board feet of pine logs hauled one mile by a four-horse hitch.

standardlumberco.jpg

Another large load of Logs pulled by a four horse team

lres12681.jpg

100 000 m3 paperipuuta sellulosatehtaan varastossa Mäntässä. / 100 000 cubic meters of timber stock for the Mäntässä.paper mill

I’m not just waffling here - there are two important factots to consider when looking at the Forestry Industry in Finland. The first is that there was vast experience within the Finnish logging industry in the construction of ice roads – and in the Winter War, ice roads were constructed and used for many purposes, not least for the rapid outflanking of Red Army forces through terrain that the Soviets considered impassable – and for the subsequent movement of artillery and supplies as well as troops. And while the Maavoimat units were mobile on skis, ice roads made the movement of large units on skis even faster. Maavoimat units were highly mobile in winter, and it was a mobility that no military outside of Finland comprehended. The Maavoimat had studied and rehearsed such movements on a smaller scale for years – and the speed, scale and coordination of their unit movements in the Winter War was like nothing the world had seen before. When we come to the Winter War, we will see this occur on numerous occasions outside of the confines of the Karelian Isthmus.

The Finns had the equipment, knowledge and experience to build ice roads to facilitate movement – almost all from the logging industry – and it was an ability they factored in to their military planning and tactics. Reservist Pioneeri (Engineer) units existed whose specialist focus was this task in winter, and the construction of routes through the forest in summer. And such routes could be constructed very rapidly indeed – miles of ice road in one night was not uncommon and where units were brought together, routes could be constructed rapidly on a very large scale indeed. And the ice roads could be rapidly thickened and strengthened for the transport of heavy equipment by the simple method of using pumps and hoses to pump water from lakes and streams onto the ice roads.

The second factor was with regard to logistics. One thing to consider if you deal with sawmills and pulp mills is that you get really really good at controlling and keeping track of logging movements and wood deliveries. Winter logging, which was the standard in the 1930’s, basically means that you need to move all your wood for the year in a short time span over recently constructed ice roads and logging tracks (as trucks were introduced into the logging industry). This is not much different than front line logistics support. Plan the best routes, queue up the trucks and stand back and adjust for the unexpected. And with tens of thousands of trips, there was a great deal of logistical planning and coordination. Also, by the late 1930’s there were some 800 different companies within Finland involved in providing services to the logging industry alone – this is not the logging companies themselves – just the companies supporting the loggers with things like trucks, heavy equipment and the like. There was vast logistical experience here, and it was this experience that fed into the Maavoimat’s transportation and supply units through the involvement of the men working for these companies in the Suojeluskuntas and the Reserves. With limited numbers of men available, the Maavoimat (unlike most military organizations) put a great deal of emphasis on finding square holes for square pegs, and where men had specialized skills, there were generally allocated to units that best suited these.

lres11770.jpg

Talven tullen ajetaan tukit rannalle odottamaan kevättä / Winter comes and the logs wait by the shore, ready to be run downriver in spring

lres12549.jpg

Tukki varastoa Mäntyjärvellä Pihtiputaan pitäjässä / Logs stockpiled at Mäntyjärvellä (Pine Lake), Pihtipudas Parish

lres12679.jpg

Paperipuun ja halkojen varastopaikka / Wood Storage beside a lack – this timber is intended for the Paper Mills

Rivermen (in North America they were called riverhogs) equipped with spiked boots and pike poles would move the logs down river to the sawmills. Log rolling, the art of staying on top of a floating log while "rolling" the log by walking, was another skill much in demand among lumberjacks. It was dangerous work for the riverhogs but the success of log drives meant economic life or death for the sawmills. Individual lumbering companies had their marks stamped into the ends of the logs. Most of these log marks were registered, but there were pirates who stole logs from the river before they were delivered to sawmills. When the logs were at the collection booms on the river more sorting began. Logs in the sorting pens were fastened together with rope and wooden rafting pins. Some companies preferred iron rings and chains. These rafts were then towed to the company mill pond.

alres538a9.jpg

Tukkeja vieritetään uit ettaviksi Laklajoella Jongun joen hoitoalueella / Logs are rolled into the water from the Storage areas - Laklajoella Jongun river management area

lres5444.jpg

The spring thaw made for considerable volumes of water in the streams and rivers, which made moving the logs easier – but also dangerous.

lres5372.jpg

1932: Tukeista tehty uittokouru jyrkässä Pusurinjoen Louhikoskessa Lieksan hoitoalueella / A steep chite for floating Logs - Pusurin Dragon River rapids, Lieksa management area

lres11822.jpg

Tukkiränni idyllisessä ympäristössä Jaalan pitäjän Karijärven vesistössä / A log chute in the idyllic surroundings of the upper reaches of the Kari Lake watershed. Where the waterways were too small or rocky or where rapids would obstruct movement of the timber, log chutes were often used and the timber was directed down these.

A log chute was a man-made trough that was used to carry logs over rough river landscape to a sawmill or down to a major river. Log chutes were built by the logging companies that held the cutting rights in the area where the chute was required. When a logging company performed its annual inspection of trackways and camps in preparation for the next season, workers would also inspect and repair log chutes. Repairs were made with whatever kind of wood was handy, sturdy, and not valuable. Log chutes were always attached to dams that were also built by the logging companies. These dams, built of timber crib construction, held back the water until the spring log drives when thousands of logs would be flushed downstream in a mighty torrent. To maintain the dams and check on water levels required the services of a “damkeeper”. Travelling by horse, on foot, by boat or a combination of any of these, this man would travel his circuit and report back the status of structures and levels to the logging company.

lres5448.jpg

Kevätuittoa Aittokoskella. Uittoränni kosken alajuoksulta katsottuna / Kevätuittoa Aittojärvi rapids. Timber Slide can be seen center top of the photo

lres5357.jpg

Lotinan eli tilapäisen padon pohjan raivausta Ukonjoella / Building a dam on the river

lres5356.jpg

1932: Näkymä lotinan, tilapäisen padon, luikusta. Vasemmalla valmista, oikealla keskeneräistä lotinaa. Näreillä toisiinsa sidottujen ja kuntalla eli suoturpeella tiivistettyjen tukkien päälle on vielä lisättävä uusia. Koitereen hoitoalue / View of a temporary dam used to glide logs downstrean. On the left the dam is finished, on the right its is unfinished. Logs are chained to each other, the foundation sites directly on the peat. Koitere management area

lres5351.jpg

1938: Lotina valmiina uittoa varten. Lotinassa näkyy pönkkien tukemat niskahirret, joiden varaan on ladottu neulaset. Niitä vastaan painavat tukeista ladotut kossat, jotka lisäksi painavat alla olevan täytteen tiiviiksi. Taustalla lotinan yläpuolella ajettu puutavara. Talviaisjoki / Logs area stored ready for floating behind a dam.

lres12626.jpg

Metsätaloudellisen valistustoimiston postikortti numero 22. Tukkeja uitetaan patoaukon läpi. Salmi, Karjala / Logs are floated through a hole in the dam. Salmi, Karelia

lres167776.jpg

1930: Pato eli tammi on täyttynyt ääriään myöten ja uitto on alkanut Hiirenjärvellä Valtimon hoitoalueella / It’s Jnanuary and the Dam is filled to the bri, Floating the logs downstream has begun

lres5363.jpg

1931 – Logs coming down the river

lres5345.jpg

Mutkaiseen koskeen on rakennettu seiniä ottamaan vastaan ja ohjaamaan tukkien syöksyjä / Curved walls have been built with logs along the banks of the river to receive and guide the logs downstream

lres5971.jpg

Purouittoa Ägläjärven ja Yläjärven välillä Suistamolla. Miehet seisovat kossilla ohjaten kekseillä tukkeja virtaavassa vedessä. Kossat on rakennettu tukeista puron molemmille rannoille, jotta uitettavat tukit eivät tarttuisi kiinni rantakiviin. Puron yli on tehty silta kahdesta tukista, jotka ovat kossien varassa / The men are standing and directing the logs in the flowing water. The Chute is built of logs on both shores of the creek, so as to prevent logs jamming in the rocks. The bridge over the creek is made of two logs, which rest on the sides of the Chute.

lres5369.jpg

Kevättulva nousemassa Ylä-Koitajoella / Logs coming down the River in the Spring Flood

lres5368.jpg

1929: Kevättulva on noussut Viekinjoessa ja uittomiehet purkavat tukkikasoja uittoon. / The river has risen with the Spring floods, logs \ are floating in the river and the men are moving logs into the water

lres12758medium.jpg

Further downstream in more placid water, the work of running the logs was less dangerous.

lres5365.jpg

Kuivan kevään takia tulvavesi ei noussut Ruunaanjärvessä, jolloin suuri suma jäi luhdalle pitkien vierity smat kojen taakse Itkiin pohjassa / A dry spring did not raise the water in Lake Ruunaa. As a result, a large backlog of logs have collected

lres5378.jpg

1930: Rauhallista jokiuittoa Tohlin joella eli Ukonjoen alajuoksulla Koitereen hoitoalueella / Loggers in a boat on the River Tohlin guiding logs downstream – Koitere management area

log20floaters20in20skog.jpg

Log floaters in the Skogfoss rapids

log20floating20in20pasv.jpg

Log floating in the Pasvik River

log20floating20in20ovre.jpg

Log floating in Ovre Pasvik 1925. The same style of boat was used by loggers in North America on the rivers there.

gallenkallelathedefence.jpg

And in fact, even in old illustrations (this os Gallen-Kallela - The defence of the Sampo) from the Kalevala, you can see the same style of boat……

lres12650.jpg

Vesikuljetus on halvempaa kuin rautateitse Paperipuista valmistettu proomu Saimaan kanavassa / Water transport is cheaper than rail. A Saimaa Canal timber barge

lres11832.jpg

Kissakosken tehdas. Hirvensalmi, Savo, Etelä-Savo / Kissakoski factory. Hirvensalmi, Savo, South Savo

lres12708.jpg

Paperitehdas, puuhiomo ja saha lännestä katsottuna / The paper mill and log holding pond

Before the railway was invented, logs were transported in large numbers from the forests down rivers either freely or as wooden rafts. This was not without its problems and wood was often damaged in transit. In addition suitable rivers were not always available. However the invention of the steam locomotive and steel rails soon led to these being employed for forestry. However the difficult terrain within forests meant that narrow gauge railways, which took up less space, were lighter and easier to build (and remove) and which enabled tight curves to be laid, were preferred. These were the so-called forest railways. Special small locomotive classes were developed for use on these lines. From the second half of the 20th century forest railways were threatened by road transportation and by the end of the 1960s they had practically disappeared. Roads were often laid in their place on the old trackbeds.

Generally, the forest railways within Finland only existed in areas owned and managed by the large state forestry companies – but where they did exist, they enable large volumes of timber to be extracted quickly, regardless of the season of the year. However, they were capital-intensive and relatively inflexible, meaning that as trucks became more common, the forest railways began to disappear.

lres12510.jpg

Forest Railway carrying Hikers in the summer

metsa2440.jpg

Forest Railway - wagons loaded with timber

lres12714.jpg

Kuorma-autolla ajetaan halkoja, kuorma on sidottu naruilla kiinni / A truck carrying small logs, the load is tied on with rope.

lres12782.jpg

Henkilöauto on törmännyt sähköpylvääseen ja kaatunut kumolleen tien poskeen. Pylväs on mennyt poikki. " Mellan Borgå och Sibbo 1930. " Negatiivipussissa teksti: metsäkongressi 1927. Porvoo, Sipoo, Uusimaa / Passenger Has crashed and rolled into an electric pole. Column is broken. "Mella Borgå och Sipoo 1930." Negatiivipussissa Text: Forestry Congress in 1927. Porvoo, Sipoo, Uusimaa

logging9.jpg
Early Logging Truck – 1920’s – early roads were poor, the engines were small and the tires were solid. No power steering either. Driving these trucks was tough and dangersous work. In the background you can see a “spar tree” - a tall tree in the landing area of the logging site to which pulleys and rigging was attached so it could be used as a spar so logs could be skidded into the landing and onto the trucks


The advent of trucks starting in the 1920’s meant that logging could also take place in summer, although in Finland the use of vehicles in the industry was initially restricted to the large forestry companies who could afford the capital outlay needed to buy the trucks and construct and maintain the logging roads which would enable the trucks to be used.

logtruck1930.jpg

1930’s – early Sisu Oy Logging Truck

In this, Finland benefitted from the early experiences with mechanisation in North America and, interestingly enough, in Latvia. Latvia and Estonia in the 1920’s and 1930’s both had fairly large scale forestry industries – and in Latvia at least, the forests were state-owned. Without the lakes and rivers of Finland to facilitate the movement of wood, Latvia had a relatively gentle landscape. Latvia thus relied on sleighs in winter and carts in summer and was an early adopter of the use of vehicles within the forestry industry, with logging tracks designed for sleighs and carts proving easily adaptable to use by trucks. Latvian forests were soon criss-crossed with plenty of good logging roads. Experience with the use of trucks from Latvia (and Estonia) percolated northwards into Finland very quickly. Finland’s economy was strong and there was an ongoing demand for labour, with shortages in the workforce often being met by Estonians (the similarity in languages meant Estonians had no major language issues) and to a much lesser extent, Latvians.

lres11857medium.jpg
“Latvian valtion metsissä on runsaasti hyviä teitä, joita myöten voidaan ajaa autolla" - Latvia / Latvia's state-owned forests have plenty of good roads, which can be easily used by cars - Latvia

Aside from the forestry industry, Finland and Latvia had many ties through the 1920s and 1930s, and the booming Finnish economy both imported from these countries (largely agricultural products) and also saw them as an important export market for many manufactured items. There were also ongoing political and military links between Finland, Estonia and Latvia (which will be covered in detail in a subsequent post) – and these links, economic, political, military and even individual, would have far-flung ramifications.

To give one specific example of the far-flung ramifications of these links, ties and inter-dependancies, just one of these Latvian immigrants was Alfred Kabzems, of whom we will see much more - born on a farm near Wolmar, Latvia on June 20, 1911, Kabzems graduated from High School, completed his period of conscription in the Latvian Army and then worked as a merchant seaman on Latvian ships. The boom in Finnish merchant shipping and the better wages paid by Finnish shipowners (relative to Latvia at least) soon saw him working as a seaman on Finnish cargo ships where he travelled the world for a number of years. In 1933 he took a shore job in Finland as an apprentice scaler and then in 1935 he took a position as a sawmill supervisor. At the same time he applied for and was granted Finnish citizenship and also joined the Suojeluskuntas, being excused Finnish conscript service due to his prior Latvian Army training.

He returned to Latvia briefly in 1935, where he married his childhood sweetheart and classmate with whom he had started school in 1921, Austra, who then joined him in Finland. When the Winter War broke out in late 1939, Kabzems fought as a member of the Maavoimat while his wife joined the Lotta Svard organisation. Some months after the war ended, early in 1941, Kabzems and his wife returned to Latvia in an attempt to move family members to Finland but were trapped by the Soviet occupation, fortunately avoiding the fate of deportation or outright execution that all to many Latvians suffered at the hands of the murderous thugs of the NKVD. Unable to escape during the Soviet occupation, Kabzems and his wife were trapped in Latvia at the time of the German attack on the Soviet Union in June 1941. Kabzems took the opportunity to study at the University of Riga and then the Agricultural Academy in Jelgava, graduating as a Forestry Engineer in 1943. In mid 1943, one of the more secretive units within the Maavoimat’s Special Operations Forces established contact with Kabzems in Latvia as Finland prepared for war with Germany.

Following this contact, Kabzems became an early and senior member of the underground Latvian Army and took on an active role in recuiting Latvians for the Finnish-organised underground Latvian Army, including many members of the Latvian Legion who were at that stage fighting the Russians within the Waffen SS. The Finnish Special Operations Forces spent most of 1943 building up an underground network in Estonia, Latvia and to a lesser extent in Lithuania as well as establishing contacts with the Polish Home Army. Kabzems, speaking Finnish and a Finnish as well as Latvian citizen and with his military experience and rank in the Maavoimat from the Winter War, was trusted by the Maavoimat’s Special Operations Forces and found himself in an increasingly senior position within the underground Latvian Army. As the Maavoimat moved southwards into Latvia, Kabzems led the underground Latvian Army into open war with the Germans.


Following the liberation of Latvia, Kabzems was appointed Divisional Commander for one of the newly formed Latvian Army Divisions and led his Division into Poland and then Germany as part of the Finnish-led Allied Army under the overall command of Marshal Mannerheim. Kabzems commanded and fought with ability and distinction through this period, before returning to an independent Latvia at the end of the war.

As we move through the history of the Winter War, Alfred Kabzems' name will pop up now and then, but his major role would be played out in the last years of WW2, from 1943 on. After the war, Kabzems continued serve in the Latvian Army but his real wish was to return to a life of working in the forestry industry. This proved difficult for him to achieve in Latvia due to the military distinctions he had received but in 1947, feeling that Latvia’s independence was now secure and his duty to his country had been done, he and his wife, Austra immigrated to Canada where he worked in the forests of Saskatchewan as a timber cruiser, forester and eventually as Director of Forest Inventory. He was recognized as a pioneer forest ecologist and published articles and books in English and Latvian on topics related to silviculture and forest productivity. In 1996 he was awarded an honorary doctorate by the Latvian Agricultural University, recognizing his contributions to forestry, forestry research and his services to forestry organizations. A scholarship fund was established in his name in the Faculty of Forestry at the University of Jelgava, Latvia. Alfred Kabzems died in Edmonton, Alberta, Canada on July 26th 2011.

Alfred Kabzems provides just one of many examples.

lres170147.jpg

Kuitupuuta kuormataan kourakuormaimella kuorma-auton lavalle / Pulpwood loaded onto a truck using a grapple loader

The Construction of the Lyngenfjord Highway - 1939

As a practical illustration of the experience within Finland that existed within the logging and construction industry at the end of the 1930’s, the construction of the Lyngenfjord Highway is an outstanding example. Within the context of the entire Second World War, perhaps the only two comparable engineering projects were the constructions of the Alaska Highway and the Burma Road – both of which came well after the construction of the Lyngenfjord Highway. The later Petsamo Highway, built in 1940, while a major engineering feat, was based on an existing highway and while it was completed rapidly in light of the German invasion of Norway, there was not quite the same groundbreaking factor involved.

In the next Post, we’ll go on to look at the construction of the Lyngenfjord Highway in detail as an example of the military use to which the equipment and experience that existed within the Finnish forestry industry was put in a time of dire need.
 
Tools, Mechanisation and Transportation in the Finnish Forestry Industry

Excellent! I think what you're writing shows that you clearly can see the connection between what kind of military power a country fields is clearly connected to economic and social structures the country has.

The forestry connection was certainly true even in OTL. One typical career, my grandfather's, can highlight it. After his military service where he received Reserve Officer training he entered Faculty of Agriculture and Forestry in order to educate himself as a forester. When Winter War started he entered position of an adjutant in an infantry battalion (S4 might be a good translation for the position in US military parlance). He spent most of the Continuation War in Supply Office of 6th Infantry Division operating in deep forests of Eastern Karelia.

After being demobilized he participated in organizing the supply network for guerrilla organization in case of Soviet attack (so called Weapons Cache Case) and spent some time in prison for that. His civilian career was in logistics field of forestry industry and during the Cold War his mobilization post was a transportation officer for a Military District. Ie. organizing transportation around the area he already was working in peacetime, mostly using mobilized assets of the company he already was working in.
 
I really dont understand this TL, as Finland arguably won the Winter War, or at least succeeded in defending their territory.
 
This TL, as I understand the intent of its mastermind, aims at having the Finns beat the Soviets decisively, then later reluctantly join the Allies and drive on Berlin. As side results, post-WW2 Latvia is going to be independent. Oh, and Uncle Joe is going to be pushing up daisies from 1941ish on...

It's going to be an epic Finnwank :)
 
I really dont understand this TL, as Finland arguably won the Winter War, or at least succeeded in defending their territory.

As Jotun says :D

Also, go back and check out the first post. The whole intent here is `Finland is waaaay better prepared when the Neigbours knock on the door. So instead of Finland scraping through as they did, they hammer the Soviet Union, face down the Germans and anyone else that gets in their face and then join in on the Allied side later (early 1944 I believe I mentioned somewhere) and take part in the race to Berlin. I envisage my final chapter being titled `Mannerheim in Berlin`or something along those lines.
 
Depending on the conduct of the Finns against ze Chermans and vice versa, I can imagine that a) significantly more German troops might surrender on the Ostfront as long as it's not to the Soviets and b) that the fall of Berlin might be VERY different from OTL (in terms of wasted human lives, both civilian and military on both sides).
If the Red Army is anything like the one that made it to Berlin IOTL, I can imagine bad blood between the Finns/Americans/Brits and the Sovs...

Ah well, just wait and see...^^
 
The Construction of the LyngenFjord Highway

The Construction of the Lyngenfjord Highway - 1939

As a practical illustration of the experience within Finland that existed within the logging and construction industry at the end of the 1930’s, the construction of the Lyngenfjord Highway is an outstanding example. Within the context of the entire Second World War, perhaps the only two comparable engineering projects were the constructions of the Alaska Highway and the Burma Road – both of which came well after the construction of the Lyngenfjord Highway. The later Petsamo Highway, built in 1940, while a major engineering feat, was based on an existing highway and while it was completed rapidly in light of the German invasion of Norway, there was not quite the same groundbreaking factor involved.

The construction of the Lyngenfjord Highway as an emergency measure had been sparked off by the Munich Crisis of September 1938. This and the subsequent dismemberment of Czechosolvakia, the ineffectiveness of the League of Nations and the appeasement of Germany by France and Britain at the cost of the independance of a small European state had come as a shock to many in the Finnish Government. To others, it was a vindication of all they had been warning about for so many years. Munich also unfortunately resulted in the abrupt termination of a number of as yet unfulfilled orders for military equipment that Skoda was in the process of completing for the Finnish Army, chiefly Artillery pieces – orders that Germany simply took over without compensation. Finland’s protests were ignored and while Germany continued to be a major trading partner for Finland, the actions of the German government did nothing to improve the Finnish-German relationship, which was in any case at best peripheral for Germany.

The Government of Finland responded in a number of different ways – these we will cover in later posts. Suffice it to say that in the event of a major European war, as in WWI it was expected that shipping traffic to and from the Baltic would be cut. Thus it was planned that in the case of a global conflict or of a war between Finland and the USSR, the majority of the fast cargo ships would be sent out of the Baltic in order to operate to and from Swedish and Norwegian ports. As port capacity of the Swedish port of Göteborg and the Norwegian port of Bergen would almost certainly be hard pressed, the basic wartime shipping contingency plan was to utilize Narvik for emergency import and export tasks. The planned use of Narvik was facilitated by three factors: First was that congestion in Narvik had decreased due to the shifting of iron ore transportation to the Swedish port of Luleå, and secondly, due to the fact that Sweden, whose major industries and population were concentrated in the south, was unlikely to fully utilize Luleå port’s full capability. Third was the rail link to Narvik.

Despite disparate railway gauges between the Swedish and Finnish rail networks (1524mm for Finland and 1435mm for Sweden) this was the only really viable alternative link that was usable for major volumes of freight – and this was also a bottleneck in a crisis situation. Firstly, the 103 mile long line from Boden in Sweden north to Haparanda (and then a further 1.9 miles from Haparanda to Tornio in Finland) was only a single track line. This railway was built in several sections over the course of 17 years with first segment from Buddbyn to Niemisel completed in 1900, followed by the segment Niemisel to Morjärv in 1902. The railway did not reach Lappträsk until in 1910, and the Swedish–Russian border at Karungi on the west bank of Torne River was not reached until 1913. Karungi was to become a junction, and the railway reaching northward to Övertorneå was not build until 1914, followed by the southern Karungi to Haparanda line in 1915. The only open railway connection between Germany and Russia during World War I ran through here. Lenin traveled here in 1917 to organise the Russian Revolution. The rail bridge over the Torne River between Haparanda and Tornio was only placed in service in 1919. Before that passengers had to walk or use horse carriages the short distance between the cities. The Haparanda station building was finished in 1918, and was sized based on the traffic during the war. All international travelers had to change trains here because of the break-of-gauge, and had to go through passport checks.

scandinaviarailwaymaplg.gif

The Scandinavian Rail Network

800pxhaparandarailwayst.jpg

Haparanda Station, Sweden

800pxhaparandatorniorai.jpg

The Haparanda-Tornio Rail Bridge (note the different rail gauges – 1524mm for Finland, 1435mm for Sweden – as late as 1915, Sweden's fear of the old enemy Russia was stronger than the economic reasons to establish a direct rail link).

During World War I in 1914-1916 Tornio had experienced an unprecedented period of bustling trade. As soon as the war started Russia's usual foreign trade access points through the Baltic Sea and the Black Sea were closed off. As Russia's wartime economy was dependant on imports, trade routes had to be changed to alternative paths. Goods started to be transported via Sweden and Norway to Finland and onwards to Russia. Russian exports were partly also transported via the same route. As a large part of these goods passed through Tornio, since there was already a railway in place, the traffic conditions of the city were completely revolutionized. Tornio was not only important to the upkeep of Russia but in the war years it was a major transit point for Finnish foreign trade.

Even though Tornio was merely a transit point, this traffic left money behind in many ways and as a byproduct Tornio's own commerce flourished. All major trading companies from the southern Finnish cities set up offices in Tornio to manage the transport of goods between Tornio and Haparanda across the border in Sweden. In Tornio many new companies were also established and there was an unlimited amount of work for them. The transport companies hired all available horses and freight costs were high.The largest such company, Karl Boström, quickly arranged a horse freight service via Kilpisjärvi to Lyngenfjord in Norway (and it was recent memories and experience with this link that gave rise to the Lyngenfjord Highway proposal of the late 1930’s – this was not a venture into the unknown, it was a route that had been heavily used only 20 years earlier). This unending stream of transport saw its height in 1916 while in the year of the revolution in 1917 the trade to Russia dried up. Even so in the early spring of 1918 Tornio was still the commercial gateway to “white” Finland. Many refugees as well as prisoners of war who had escaped from prison camps also travelled through Tornio in both directions. The border at Tornio also became an exchange point between Germany and Russia for the exchange of prisoners and the wounded.

A railway between Tornio and Haparanda would have assisted greatly in the transportation of goods over the course of WW1 but the link was not completed until 1919. Post 1919, exports through Tornio to Sweden and via Scandinavia to the rest of the world would continue to be remarkably extensive and importing businesses also started to take advantage of the railway link. There were some hindrances – the different rail gauges between the two rail networks meant that onward freight in both directions needed to be cross-loaded, and in the early 1920’s, this was a labour intensive task. Logistical handling improvements speeded up this work and reduced the costs of cross-loading substantially (as was covered in one of the very early posts).

However, the single line link WAS a logistical bottleneck and there was also a potential political problem in that Sweden could not be relied on to support Finland unequivocally should a war break out between. As we will cover in a later Post, from the mid 1920’s onwards, Finland had continuously worked to try and build a defensive alliance with Sweden. These efforts however had not had any success – Sweden was cautious with any action that had the potential to bring the country into a conflict wit the USSR (old fears of Russia were always close to the surface). There was an additional factor, in that the leftist governments of Sweden were suspicious of the Finnish governments (there was no great love for the Finnish conservative coalition governments of the 1920s, and even the “Red Earth” coalition was looked at with suspicion). Thus, there was a continuing “risk factor” that in a war between Finland amd Sweden, Swedish support might be non-existent and pressure on Sweden from the USSR might result in any links to the external world through Sweden also being cut. Thus, while the rail route to Narvik was a likely contingency route, it was not by any means guaranteed. Likewise, the rail link to Narvik itself was a bottleneck. Perhaps a little more description of this link is in order before we examine the Lyngenfjord Highway Project in detail.

The Railway to Narvik

While Narvik is a town with a long history, it only really became important in the 1870’s, when the Swedish government began to understand the potential of the iron ore mines in Kiruna, Sweden. Some of the best iron in the world comes from Sweden. One of the most important iron ore districts of Sweden—the Norrbotten District— lies in the wild fastnesses of Lapland, beyond the Arctic Circle. The existence of the great Lapland ore fields was well known generations ago, but the iron workable in those parts had a high content of phosphorus, which made it useless in the smelting methods used in days gone by. Lapland ore consists of magnetite (magnetic oxide of iron), and has an iron content of 60 to 65 per cent, this varying according to the amount of phosphorus in the ore. The greater the phosphorus percentage, the less is that of iron. Iron to-day dominates the region that stretches in an attenuated form from the Gulf of Bothnia in Sweden to the coast of the North Atlantic at Narvik, in Norway.

Once that district was remote and as little penetrated as was the Hudson Bay area in Canada. To-day, electric trains run across and through the mountains, and men have built busy industrial towns in the middle of the primeval forest. Iron was the sole reason for these developments. Away from the beaten track—that is, the iron ore districts and their traffic artery—Lapland is still virgin country. Though the smelting and conversion to steel are not carried on in the Norrbotten District, the Basic Bessemer process was the immediate cause of the development of that district. In his original process, Sir Henry Bessemer was obliged to avoid using phosphoric iron because it was unsuitable for his original converters. In 1878 the engineers Thomas and Gilchrist, faced with this disability of the Bessemer process, conceived the idea of lining the furnaces or converters with magnesia and lime where phosphoric iron was to be treated. They bonded the mixture together with tar, or similar material containing little silica, and added lime to the metal during the blowing process. The magnesian limestone mixture absorbs phosphorus out of the molten iron as long as oxidization is continued, as, for example, by the frequent addition of ore containing iron oxide. Thus the introducers of the Basic Bessemer process assured the future of the Lapland ore fields.

The 'eighties of the last century saw the first developments in the opening up of the Lapland iron ore district. Close to Gallivare, nearly fifty miles north of the Arctic Circle, rose the great Malmberg, 2,026 feet high and described as a "solid mountain of iron." "Reef" would, perhaps, be a more correct term, though the name Malmberg means "iron mountain." This huge reef, between three and four miles in length, consists chiefly of bright specular iron (crystalline sesquioxide of iron) mixed with magnetic oxide of iron. The Malmberg, however, could not be worked without a means for carrying the ore away to the sea for shipment. Obtaining iron ore from Kiruna had one significant problem in that there was no suitable Swedish port. The nearest Swedish port, Luleå, had limitations. It was covered with ice all winter, it was quiote a distance from Kiruna, and it could service only medium-sized bulk freight vessels. Of roads in Swedish Lapland there were none worth the name. None of the country's huge rivers, with their rapids and falls, could support shipping, and iron ore could not be carried down these swift rivers in the same way as timber. Realizing these problems, a Swedish company (Gällivarre Aktiebolag) decided to build a railway to Narvik, through surroundings and into latitudes where the locomotive had never before been imagined, as the port there is ice-free thanks to the warm Gulf Stream, and is naturally large, allowing ships of virtually any size to anchor. Therefore, Narvik was established as an all-year ice free port for the Kiruna and Gällivare iron mines.

In 1887 work was begun by British engineers on the railway from Lulea, on the Gulf of Bothnia, to Gallivare and Malmberg. This line was owned by the North Europe Railway Company and was promoted by capitalists in England. The railway to the Gallivare area was opened in 1888, and with its inauguration the mining engineers were able to make a beginning. After the start made at Gallivare, the prospectors pushed on, still farther north, to the great ore reefs known as Kiirunavaara and Luossavaara. To reach these reefs the engineers had to carry their line more than 100 miles north of the Arctic Circle. They penetrated virgin forest and bare mountain-side until they reached the reefs. The main reef, Kiirunavaara, appears from a distance as a serrated mountain ridge and has a length of nearly five miles. The Luossavaara reef, besides being considerably smaller, forms the summit of a rounded hill. The three reefs already mentioned are estimated to contain at least a billion and a half tons of ore. It is probable that a great deal more remains for the prospector. In addition to these, there are lesser workings owned by the Swedish Government in Lapland at Svappavaara, Leveaniemi, Ekstromsberg and Mertainen.

Dr. Hjalmar Lundbohm was the father of the Kiirunavaara workings and of the modern township of Kiruna which has sprung up beside them out of the northern waste. He saw his projects realized in the early years of the present century and to-day the community virtually founded by him is the largest in the whole of the Norrbotten District. In this district the mining engineers use the "open cut" system in attacking the great reefs at the Gallivare and Kiruna centres. This means that they quarry out the sides of the reef in terraces, or "benches," as they are called, so that the mountain looks as if it has been cut into a series of enormous steps. The miners bore the face of the mountain with powerful rock drills and insert their charges. When a blasting operation is about to take place a siren is sounded and an observer sees figures on the face of the workings beginning to move away from the critical place. Again the siren sounds, a third time and a fourth. Finally another siren, with a deeper pitch, sends forth a long-drawn note as a last warning. Then the man responsible fires his charge. There is heard the deep, thudding volley of the charges, followed by the crash of falling rock.

In adopting the open-cut system, the engineers had to evolve means of getting the ore quickly and easily away from the working face and into the trains which carry it off for export. This was done by making "glory holes," as they are called in English-speaking countries. At ground level the men pierce the face of the mountain with a series of railway tunnels, each terminating in a dead end. This dead end contains a spacious ore bunker, from which the excavators bore what is known as a "raise," straight upwards through the rock until they break ground on the surface of the bench overhead. The upper end of the raise they widen out in a funnel formation, so that the glory hole acts as a huge chute, with a hopper at the top. The miners clear away the ore from the face of the cliff and pass it into huge crushers which reduce the pieces of ore to a size suitable for shooting down the glory hole. Small tram-roads assist in carrying material on the benches and huge power-driven shovels do the lifting and dumping.

01352.jpg

THE GLORY HOLE of an open iron ore mine is shown in this sectional diagram. The glory hole is a chute or funnel-shaped shaft, leading from the working face to a bunker at the end of a tunnel along which railway trucks remove the ore.

This entire operation of blasting, crushing and transporting to the tops of the raises is known as milling. While the milling is going on up above, the men at work in the bunkers down below are busy. As the ore falls into the bunkers, it is held back by strong gates, from which the loaders draw it off, finally shooting it into the waiting railway wagons in the tunnel. The open cut system of mining is a method of some antiquity. Miners knew it long before they knew the deep shaft, the high-speed winding engine or galleries situated about a mile below the surface of the earth. In Germany all classes of mining are known as Bergwerk, or "mountain working" and, on considering the open cut system, we see how the early mining engineers came to use this term. When the first pioneers came to the Lapland ore fields, they saw that the open cut system would be the one to employ on the vast reefs round Gallivare and Kiruna. Where it can be practised the system eliminates many difficulties with which the builders of underground workings have to contend. The open benches cannot be flooded nor can they catch fire. The dangers from falling rock, though they exist, are far less than in the vast systems of underground galleries common in Great Britain and elsewhere. The ore is on the surface, waiting to be taken away.

The township of Kiruna is a good example of town planning. For his site Dr. Lundbohm took a relatively low hill and arranged the roads of the residential parts as a series of concentric rings girdling its lower slopes. On the summit he set the site for the public buildings which to-day consist principally of a bank, a post office, a church and a cinema. With this nucleus it is an easy matter to expand the town without destroying its symmetry and initial layout. The great Lapland Ore Railway is the traffic artery without which the whole industry in these remote parts would be at a standstill. When the old North Europe Railway Company began work on its first section between Gallivare and the coast, it had a relatively easy task before it. Sweden has a generally easy slope down towards the Baltic and the Gulf of Bothnia from the central Scandinavian mountain chain, which divides the country from Norway on the west. In carrying their line up from the coast, the railway engineers took a fairly straight slant across this gradual inclination. The gradients were relatively easy and the engineers encountered none of the difficulties that were keeping their colleagues at bay in Norway. After a time, however, the private company gave place to Swedish Government interests.

01341.jpg

ACROSS THE ARCTIC CIRCLE to Narvik, on the Otot Fjord, Norway, the Iron Ore Railway affords a direct outlet from the iron ore districts of Lapland at all times of the year. The railway was built from Lulea, on the Gulf of Bothnia, and work began in 1887.

In the beginning of the present century the railway engineers completed their line over the great Lapland mountains, by dint of superhuman work with rock drill and blasting charge. In 1884, Gellivare Aktiebolag (taken over in 1889 by LKAB) was granted a concession for mining in Malmberget. Four years later, the first part of the Ore Line, from Malmberget to Luleå, was completed. In 1889, the mining company filed for bankruptcy, and the Government of Sweden bought the line for 8 million Swedish krona, half the original investment cost. Construction of the Ore Line and Ofoten Line from Gällevare to Narvik started in 1898 and was completed in 1902. The Norwegian section of the Line was called Ofotbanen (the Ofoten Line) and was a 43-kilometre (27 mi) railway line running from the Port of Narvik to Riksgränsen on the Norway–Sweden border, where the line continues as the Ore Line via Kiruna and Gällivare to Luleå.The Ofoten Line was single track, electrified at 15 kV 16⅔ Hz AC and with seven stations. Construction of the Ofoten Line started in 1898, simultaneously with construction work on the Ore Line from Riksgränsen to Kiruna.

The year 1902 saw the first, ore trains running through from Kiruna to Narvik allowing iron ore to be hauled from the mines in Kiruna to the ice-free Port of Narvik. The Lapland iron industry was independent of the Lapland winter at last. But the opening of the through railway line did not solve the problems of the engineers responsible for the transport of the ore. Their walls, giant fences and snowsheds might ward off the devastating effects of sliding snow, but they had still the drifting snow to contend with. At first they adopted the same methods as are used in Great Britain on the exposed lines of the Scottish Highlands and on the Pennines. A locomotive would have a great prow-shaped plough built up over its buffers and smokebox; two others would be coupled up behind, and the three, thus armoured, would be sent at speed into the drifts. This method worked fairly well, but there was always an element of danger in it and it could scarcely be described as scientific. One day in the winter of 1904 a plough, thus driven by three locomotives, met with such resistance that all were thrown off the track.

Because of this accident, the Mechanical Engineer's Department of the Swedish State Railways decided that the only way to deal with such a climate as that of Lapland was to adopt the rotary type of plough. Briefly, this consists of a huge multi-bladed wheel or rotor, with a central cutting boss, mounted on the front of a special railway van and turned by a powerful engine inside the van. With this appliance, those responsible for keeping the track clear are able to screw their way through the drifts instead of forcing through them. As the rotor turns, it automatically shoots the waste snow out at one side of the stout steel hood that covers it. The entire snow plough is propelled by an ordinary locomotive coupled up behind it. The ploughs, originally steam-driven, are to-day electrically operated. The Swedish State Railways' engineers were the first to apply electricity as a motive power for snow ploughs.

narvik3.jpg


Engine on the Narvik Line fitted with a Snow Plough

The original motive power of the Iron Ore Railway was steam. From the first, the Operating Department found that steam had its limitations. The steam locomotive is not an ideal form of power in exceptionally cold climates, and the winter temperature in the mountains of Lapland is often round about zero Fahrenheit. The engines, too, were of only moderate power, and at first it was normal for three to be requisitioned for hauling one ore train over the mountains, a wasteful and costly process, particularly in a country such as Sweden, which has few coalfields and has to import her fuel. Large engines were built in an attempt to reduce piloting and its attendant costs, but shortly before the war of 1914—18 the engineers of the Swedish State Railways decided that electrification would provide the solution of their traction troubles. Even this was not without its difficulties. They could not use conductor rails, which are most susceptible to the effects of ice and snow.

Having studied methods which were then being adopted in the Alpine countries, they decided to use the single-phase system, feeding current to overhead contact wires at 16,000 volts, 15 cycles. For the source of their energy they chose the Great Lulea River, near where it flows out of the Suorva Lakes on the first stage of its journey down to the coast at Lulea. They placed the hydro-electric power station at Porjus. As a protection against climatic conditions the machinery was installed in a hall 160 feet below ground. Porjus Power Station contains six single-phase generators for traction and power, one being held in reserve. The energy is generated at 4,000 volts, 15 cycles, but the transformers feed it to the overhead transmission lines at a pressure of 80,000 volts. Two main transmission lines radiate from Porjus to the fifteen sub-stations, where the current is stepped down to its final pressure of 16,000 volts. Of these lines one runs northwards and forks, sending branches to Kiruna and Tarendo, and the other southwards to the Gulf of Bothnia.

On 19 January 1915, the Ore Line between Riksgränsen and Kiruna was electrified. Until 1925, Swedish Oe locomotives were used. NSB decided to order two types of electric locomotive for the line: El 3 and El 4. El 3 was nearly identical to Oe and was a twin unit locomotive with a combined power output of 2,132 kilowatts (2,859 hp). Four twin units were delivered in 1925, and a fifth in 1929. The El 4 locomotives were longer and more powerful, and operated as singles. Each single El 4 had the same power output as a twin El 3. Two units were delivered in 1926, two in 1928 and one in 1929.
Operation and ownership of the Ofoten Line was held by the Norwegian State Railways. A plan for electrification of the Ofoten Line had been made in 1911, but not until 1920 did parliament approve the plans. Operations with electric traction engines started on 15 May 1923, and the line was officially opened on 10 July. and started using El 3 and El 4 locomotives. The full ore trains operated at 60 kilometres per hour (37 mph), while the empty return trains operated at 70 kilometres per hour (43 mph). NSB operated the trains using their rolling stock from Narvik to Abisko, where there was a change of locomotive and operating company.

01330.jpg

THE DAM ACROSS THE GREAT LULEA RIVER, where it flows out of the Suorva Lakes, in north-west Sweden, is 4,115 feet long and 42 feet high. The dam had to be specially strengthened to resist the pressure of the ice brought down the river in winter. Water for driving the turbines in the generating stations is drawn through a tunnel bored through the solid rock. Power is transmitted to the Iron Ore Railway by overhead conductors.

01342.jpg

AT A DEPTH OF 160 FEET below the surface of the ground is the dynamo room of the Porjus Power Station. In this hall, 230 feet long and 33 feet high, the temperature is 50° Fahrenheit when there are 72 degrees of frost above. Power from this station is supplied to the Iron Ore Railway and to the iron ore fields and works in the Norrbotten District.

01320.jpg

ONE OF THE STEEL PYLONS which carry the transmission fines of the Iron Ore Railway across 316 miles of bleak fells and deserted forests. Power is generated at Porjus, in Sweden, and transmitted at a pressure of 80,000 volts to the fifteen sub-stations, where it is stepped down to 16,000 volts.

01351a.jpg

AN IRON ORE TRAIN on the Lulea-Narvik railway. Ore from the prolific fields of Malmberget (the "iron mountain "), Kiirunavaara, Luossavaara and other workings in the Norrbotten district is transported by this railway for shipment either at Narvik, in Norway, or at Lulea, on the Gulf of Bothnia, the northern arm of the Baltic Sea.

narvik1.jpg


Another photo of an Iron Ore Train on the Narvik Line

narvik2.png

Passenger Trains also ran on the Narvik Line

Altogether these transmission lines, with their gaunt steel pylons straddling the bleak fells and deserted forests, cover upwards of 316 route miles. The sub-stations are situated at intervals of twenty miles from one another. By June 14, 1923, electric traction was in operation throughout between the Gulf of Bothnia and the North Atlantic coast at Narvik. Since that date the whole of the traction on the Ore Railway, and all the machinery used in connexion with the workings at Gallivare and Kiruna, have been operated by energy drawn from the fall of the Lapland rivers. Nature, the old enemy, was thus tamed by the engineers into becoming the prime mover. To regulate the flow out of the Suorva Lakes, feeding the works at Porjus and Harspranget, experts sent into the North by the Government decided to throw a dam or barrage across the Great Lulea River at a point near where it leaves the Lakes at the beginning of its downward course. Their preliminary work began in 1919, and they undertook it at a point near the head of the river where it was divided into two channels. Across the western channel they built a dam with no outlet. For the eastern channel they provided two tunnels passing under a dam equal in height to the western dam, the water being headed up 343 feet. The tunnels are not incorporated in the dam itself, for the builders bored them through the solid rock underneath. One of the tunnels is sufficient to regulate the flow, the other being provided as a stand-by.

Protection of Machinery from Ice

The ice formations in the Lapland rivers presented a formidable problem to the builders of dams and hydro electric installations. They had particular trouble in rapids situated above power plants. "Anchor ice" formed on the boulders at the bottom of the stream. In due course this ice became loosened, was carried down and formed dangerous jams. Moreover, the agitation of the water in the rapids caused it to be additionally exposed to the cold air above and to form ice needles. These ice needles, as they accumulated, resolved themselves into troublesome ice sludge, which was aggravated by the presence of snow blown into the current from the banks. At the generating stations, too, those responsible found themselves facing serious difficulties from ice. The turbines, being built on an enormous scale, suffer little from ice sludge, but the screens covering the turbine intakes became clogged with it. The engineers adopted two methods. One consisted of heating the screens by electricity, thus thawing out the sludge as fast as it adhered. In other instances they removed the screens altogether. At the sluices the ice at first tended to choke the rolling sluice gates and to pack up in the intakes. The experts overcame these troubles by electrically heating the gates, as they had the turbine screens, and by providing a kind of wooden flooring for the intakes, under which they drew hot air from the generating house.

01360.jpg

PORJUS POWER STATION supplies electric power not only to the Iron Ore Railway, but also to many of the iron ore workings in Lapland. Water for driving the turbines comes from the Suorva Lakes. Six single-phase generators are installed for traction and power.

The Suorva Dams are situated some distance above Porjus. This is the nearest point on the railway, and there was no road, the only means of surface communication being by boats on the navigable parts of the Great Lulea and by sledge in winter. Yet there the Swedish engineers set up their two great dams, building them of the native stone. Aircraft solved one problem of communication, the aeroplanes being mounted on floats in summer, when they alight on the calmer water of the Great Lulea, In winter ordinary land aeroplanes are in use, these having skis substituted for the usual undercarriage. At Narvik, the Ore Company has its great quays and loading appliances on the shores of the Ofot Fjord, a vast, weird sea loch running in among precipitous mountains. Alongside the quays may be seen steamers waiting to carry the ore away to all parts of the world. A representative example of an iron ore steamer is the Sir Ernest Cassel, of 7,739 tons gross. In appearance she resembles a huge collier, with the engine-room and cabins right aft, a small navigating bridge amidships, and most of her space given over to holds.

msernestcassel1.gif

Steamship SIR ERNEST CASSEL (photo in Narvik) was a Swedish steam-engined ore carrier of 7,773grt built in 1910 by Hawthorn Leslie, Hebburn, England. In 1921 she was sold and renamed ERNEST SS for Bolten, Millers NFL. In 1922 she was again sold and renamed SIR ERNEST CASSEL SS when purchased by P. A. Welin. Sweden. On the 16th April 1941 she was sunk by gunfire by the German raider Thor.

durand20.jpg

Another iron-ore carrier - SS Martha Hendrik Fisser, Narvik, Norway: At the iron ore dock. Port of Registry was Emden, Germany

narvik1924withironharbo.jpg

The Port of Narvik in 1924. During the construction of the railway, the port was planned to be called Victoriahavn (Victoria Harbour) up until 1898, when the name was changed to Narvik. The town was officially founded in 1902

riksgrc3a4nsenstation.jpg

Bjørnfjell Station, at 513 metres (1,683 ft) above mean sea level, in 1906

mapofmalmbanan28section.png

Map of the Narvik to Luleå Iron Ore Line

Swedish Iron Ore, Germany and the Finnish perspective

Finland had long factored access to the external world via Sweden and the Narvik link in to military strategy in the event of a war with the USSR. What had not been factored in was the impact on this strategic assessment of a European War involving Germany at one and the same time. The Munich Crisis of late 1938 had led to a rapid and complete reanalysis of the situation – and the prognosis gave cause to serious concern.

In 1915 (during WW1) British warships had violated Norwegian territorial waters to seize a German steamer inside the three mile limit. And near the end of the First World War the British, Americans and French had induced the Norwegians to allow the Skjaergaard to be mined in order to prevent German ships and submarines from using their territorial waters as a way around the Great Northern Barrage, a massive minefield laid from Scotland to Norway as part of the earlier allied blockade strategy. Suomen Maavoimat intelligence indicated that Germany in 1937 had received 20m tons of iron ore overall from various foreign sources. Although she was able to produce around 10m tons of her own iron ore each year, it was of low grade quality and needed to be mixed with high grade material from other countries such as Sweden, which annually supplied her with 9m tons (7m from Kiruna and Gallivare in Lapland and 2m from the central Swedish ore fields north-west of Stockholm. There were two main routes by which iron ore was shipped to Germany from Sweden.

The Eastern Route: From May- November, ore from the Northern region was shipped from the port of Lulea down the Gulf of Bothnia to the German north Baltic ports at Lubeck, Swinemunde and Stettin. Outside these months, the Gulf of Bothnia froze over, severely restricting supplies, and although an alternate port was available at Oxelösund, south of Stockholm for the transport of iron ore from the mines in Bergslagen, this facility was unable supply the full amount required by Germany, and in any case froze over herself from March – January each year. And while in 1938, Finnish icebreakers kept the sea-route to Lulea open for much of the winter season, it was estimated that even when Lulea and the Baltic ports of Oxelosund & Gavel were open it could only supply around 8m tons or less than half pre-war imports. And by 1938 much of this was carried in Finnish ore carriers – a trade which would itself be under serious threat in the event of a war with the USSR. The Finnish assessment concluded that in the event of the USSR attacking Finland while a state of war existed in the rest of Europe (and more particularly, between Britain/France and Germany), Germany would have no choice other than to transport the majority of its ore along the sea route down Norway’s heavily indented Western coast from Narvik. This in turn would in all likeliehood provoke a British attack on the German ships and possibly Narvik – and this was the port and rail route that Finland was counting on for access to what would be vital military supplies in the event of a war with the USSR. “Serious concern” was an understatement as this realization dawned on the Finns.

The Western Route (The ‘Norwegian Corridor’, Western Leads or Skjaergaard): The port of Narvik, high above the Arctic Circle was open for iron ore shipments all year round. But the stormy Atlantic coast of Norway in WW1 had provided another extremely useful geological feature for Germany in her attempts to continue shipping the ore and beating the allied blockade. Immediately offshore from Norway’s western coast lies the Skjaergaard (Skjærgård), a continuous chain of some 50,000 glacially formed skerries (small uninhabited islands) sea stacks and rocks running parallel to the shore. A partially hidden sea lane (which Churchill called the Norwegian Corridor) exists in the area between this rocky fringe and the coastal landmass proper. Inside this protected channel it is possible to navigate the entire 1,600 km length of the Norwegian coast from North Cape to Stavanger. Such coastlines, sometimes known as Leads - a rough English translation for the common Norwegian nautical term Ledene (shipping lane) are common around Scandinavia - Skjaergaard also exist along the Swedish and Finnish Baltic coasts and off Greenland.

In WW1 the Germans had made great use of the Norwegian Corridor to avoid the attention of the always watching Royal Navy and the Finnish Military Intelligence assessment was they would do so again. Up until the time of the Munich Crisis, Finland had not invested any significant effort in a military analysis of the ramifications of another European War. Finnish resources had been largely concentrated on the ever-present threat from the USSR and with Finland having good to close relationships with ALL the major European Powers, no real attention had been paid to the geo-political ramifications of such a conflict. Following the Munich Crisis, the blinkers had been lifted and in the rapid reassessment that followed, the blunt Finnish Military Intelligence assessment was that a steady stream of German iron ore vessels ould attempt to make the long trip south from Narvik, sometimes within the three mile curtilege of neutral Norwegian territorial waters, sometimes just outside if the way appeared hazardous or the sea particularly turbulent. At the southernmost point the iron ore captains had to make a choice:

1) Follow the Skjaergaard around the coasts of Norway and Sweden, down through the Kattgat and finally into the north German North Baltic ports of Lubeck and Stettin. This route was safer because it brought them much closer to the protection of the German naval patrols and Luftwaffe air cover but involved hauling the very bulky and heavy iron ore the long way overland to the industrial centres on the heavily overburdened German railway system

2) Leave the safety of the Skjaergaard and make a dash south across the Skagerrak, (the sea channel north of the Danish Jutland peninsula) and hurry down the west coast of Denmark to Hamburg and Bremen. This was the preferred route because it allowed the ore to be taken straight along the efficient inland waterways to the industrial heartlands of the Ruhr and the Rhineland where it could be processed. It was however much more hazardous, putting the ships and their precious cargo at the mercy of what were anticipated to be the waiting allied submarines and patrolling destroyers – as had been the case in WW1.

In the event of a war involving Germany vs Britain and France, the Finnish assessment was that Swedish iron ore (and Finnish iron ore from Tornio together with Finnish Nickel and Copper for that matter) would be an important economic factor for Germany and shipments to Germany would as a matter of course be a target for the Royal Navy. The importance of these shipments would be increased after other sources were cut off from Germany by a British sea blockade as was the case in WW1. On the beginning of hostilites, Britain and France were to be expected to re-enact a repeat of the blockade system used to great effect throughout the previous war. They would be able to do this because they had vastly more powerful naval forces at their disposal than Germany, a country lacking in natural resources and heavily reliant on large scale imports of a wide range of goods. And the material Germany needed above all others was iron ore, a steady supply of which was imperative in the creation of steel which would be needed to sustain her war effort and general economy.

With any declaration of war and the start of the blockade, much of the foreign supplies of iron ore would be lost to Germany. Germany could be expected to retain access to 3 million tons per annum from neutral Norway and Luxembourg, but the 10 million tons from Lorraine in France and the supplies from Morocco and Spain were lost to her, and so the remaining supplies from neutral Scandinavia would become of crucial importance. Grand Admiral Raeder, head of the German navy, had been recorded as declaring that it would be "utterly impossible to make war should the navy not be able to secure the supplies of iron-ore from Sweden." All of this meant that access of Finnish shipping to Narvik was now a high-risk proposition.

Regardless, following the Munich Crisis, other measures were taken to improve the ability for Finland to use the Narvik Line for importing of military supplies in a war-emergency situation. Forseeing the possibility of Finland having to rely on Narvik for imports, the government directed Valtionrautatiet / Statsjärnvägarna (State Railways) to begin constructing a large number of oil-tanker wagons to facilitate the importation of Oil via the Narvik rail link. This was not complex engineering, and progress was steady over 1939, so that by the time of the Winter War, a considerable amount of rolling stock suitable for the transport of Oil had been built up. As an insurance program in the event of war, it was a surprisingly successful move – of course, once Norway was invaded by the Germans, ensuring shipments of Oil arrived at Narvik then became the problem. But at least in the early months of the Winter War, once it was at Narvik, transport to the Finnish Oil Refinery was not an issue.

These oil-tanker wagons were also designed and built with axles and wheels that could be adjusted from the Swedish to Finnish gauge and special equipment was installed at the Tornio railroad station to allow for adjusting the gauge of these specially fitted train wagons so there is no longer need to cross-load the cargo. An effort was also made to construct a number of standard freight wagons along the same lines and these were built and used by Valtionrautatiet on the Finnish rail network – but were available to be relocated if necessary in the event of war. After negotiations between the Swedish and Finnish governments in early 1939, Valtionrautatiet had also ordered six El 4 locomotives for use on the Narvik Line – only two of these had been delivered prior to the outbreak of the Winter War and the consequent shortage of electric locomotives proved to be a bottleneck, limiting the number of trains that could be run down the line.

Further Contingency Plans

As a result of increasing tension within Europe, the above analysis and the dawning realization of the serious danger to Finland, two further contingency plans for emergency ports were drawn up. The first and perhaps the most obvious was to use the Finnish port of Petsamo in Northern Finland. The other, based on the recent use of Lyngenfjord in Norway as an access route in WW1, was for the use of Lyngenfjord in Norway.

It was decided that work to implement Lyngenfjord as a contingency port would begin immediately with the construction of a dual lane all-weather highway taking priority. Work on a Rail link to Lyngenfjord would begin simultaneously but was expected to take longer to complete than the Highway. A 116 mile long line already ran in the right direction – the Kolarin Rata (Kolari Railway) from Tornio and Kolari. The railway was not electrified and it was the standard Finnish broad gauge, inter-connecting to the Oulu–Tornio railway in Tornio. The first 49 miles from Tornio to Kaulinranta had been built in 1928, and with the opening of the large-scale Rautuvaara iron ore mine in 1935 to feed the steel mills of Tornio, the railway had been extended over 1933-35 the remaining 76 miles to Kolari, with a 12 mile extension to the mine of Rautuvaara (in 1937, the Äkäsjokisuu had been brought into production). These mines were the primary reason to extend the railway north of Kaulinranta and the fact that this had already been done served Finland well.

Thus, a sizable chunk (116 miles) of the 350 mile route from Tornio to Lyngenfjord had already been finished, with both a road and a railway line in existence. As it stood, the reasoning behind the construction of the Lyngenfjord Highway was straightforward. In the event of a war with the Soviet Union, it was entirely likely that Finland’s main trade routes by sea through the Baltic to the rest of the world would be cut off. And while Petsamo provided an all-year round ice-free port, it was both undeveloped and entirely too close to the border with the USSR. Strategically, building a good all-weather route to Petsamo and upgrading the port facilities would not alleviate Finland’s strategic exposure but would rather make her more vulnerable in the event of a Soviet attack.

While building a highway to Petsamo was seen as a strategic risk given the proximity of the port to the border with the USSR, the cost of building two major highways simultaneously was also considered prohibitively expensive – so the decision was to concentrate on the Lyngenfjord option as being the most strategically sound alternative. This was undertaken as an emergency program, with Maavoimat engineering units and private construction firms organized in late 1938, negotiations with the Norwegians to secure Norway’s agreement, equipment and supplies stockpiled over winter and work beginning early in the Spring of 1939. Confident in their own neutrality, and more than happy at jobs for Norwegians being financed by someone else, the Norwegian government made no objections and indeed, actively facilitated both the Highway Construction Project, the simultaneous Rail Link Project and the construction of wharf facilities at the small Norwegian village of Skibotn, located on the southeastern shore of the Lyngen Fjord.

finlandmap.jpg

(OTL Map from Post-WW2) …but it shows the Finnish road link to Norway that runs parallel to the Swedish border – this is the route of the Lyngenfjord Highway - Lygnenfjord is where the highway from Finland now links to the main North-South highway through Northern Norway (at the time, in 1938, there was no North-South Highway, merely a road constructed for reindeer and sleds that was only navigable during the winter months

800pxtromscountymap.jpg

Lygnenfjord is a sheltered fjord in the Troms County of norther Norway, bordering the Finnmark to the northeast and Nordland to the southwest. To the south is Norrbotten Län in Sweden and further southeast is a shorter border with the Lapland Province of Finland. The Lyngenfjord Highway as it was eventually built terminated at the Norwegian village of Skibotn, located on the southeastern shore of the Lyngen Fjord. The distance by road to Kilpisjärvi, the northernmost community in the western "arm" of Finland, is approximately 50 kilometres (31 mi). Prior to the construction of the Highway and port facilities, the population of Skibotn was around 700 people.

lyngenmap.jpg

Lyngenfjord, with the locations of the small village of Skibotn shown. This was a large and well-protected anchorage and with the development of suitable wharfing facilities to handle larger amounts of cargo, proved to be of critical importance in the Winter War. Securing Lyngenfjord was the major reason for Finnish intervention during the German invasion of Norway.

Next: The Construction of the LyngenFjord Highway……..(really...)
 
Last edited:
The construction of the Lyngenfjord Highway - 1939...

The Construction of the LyngenFjord Highway……

The construction of the Lyngenfjord Highway and the parallel Lyngenfjord Railway is a little known engineering epic which was not widely publicized at the time for security reasons. Perhaps the only comparable engineering projects of the WW2 period were the constructions of the Alaska Highway and the Burma Road – both of which came well afterwards. The construction of the Lyngenfjord Highway as an emergency measure had been sparked off by the Munich Crisis of September 1938 and the reasoning behind the decision to build this Highway and the parallel Railway have been covered in the previous post. The construction project itself was fast-paced from the moment the Go decision was made (in mid-December 1938). The epic project’s success was an illustration of all that had been achieved in Finland over the past 20 years – the ability of the politicians to come together and, on military advice, make a strategically necessary decision without the internecine bickering of party politics intervening. The ability of the military to mobilize and move rapidly in close partnership with Finnish companes – and it was the logging, construction and engineering industries that supplied the key expertise and construction resources.

And it should always be kept in mind that while this was the largest and fastest engineering project undertaken in Finland to that date, major work was also underway that same spring and summer on the Karelian Isthmus, with many thousands of volunteers at work strengthening the defensive positions throughout the Isthmus. Over the spring and summer of 1939, Finland was humming with activity – the defence related manufacturing plants were working 24/7, military exercises were continuous, the Karelian Isthmus was like a next of disturbed ants and deep in the wilds of Lapland, 10,000 men from Suomen Maavoimat Pioneeri (Engineer) units working alongside a further 12,000 civilian contractors to drive the Lyngenfjord Highway through.

alaskahighwayrte51mile1.jpg

A road of sorts to Lyngenfjord already existed and had been used even prior to WW1, but for most of thr route it was more of a mud track than a formed road – as most roads were in back-country areas before the coming of the automobile. Still, it formed the basis for part of the route and it also allowed construction to start at a number of points simultaneously….

The route of the Tornio to Lyngenfjord Highway ran for 350 miles, traversing forests, crossing swamps, bridging numerous rivers and streams and finally piercing the Norwegian mountains before finally reaching Lyngenfjord. Fortunately, the first 100 miles to Kolari already existed, together with a railway, and this reduced the length of road and rail that had to be driven through to “only” some 250 miles. The decision to build had been made in mid-December 1938, but the fierce Arctic winter meant construction work could not start until March 1939 at the earliest. Those months were not idle ones – the first step in building the Highway was to determine its route – and route surveys were carried out through the dead of winter, largely following the old route to Lyngenfjord and assessing its suitability, gradients and creating maps to work from when work started. Leading the team of surveyors that winter was Tuomas Vohlonen.

winter2sl.jpg

The old route to Lyngenfjord in Winter

tuomasvohlonen.jpg

Tuomas Vohlonen, leader of the Lyngenfjord Survey Team, Winter 1938, taking a bearing with the compass he had designed and manufactured. Vohlonen was an experienced surveyor and a well-known member of the Suojeluskuntas. Vohlonen volunteered to lead the survey party on their two month long task. He died in the summer of 1939, shortly after returning from a trip to the Finnmark where he had completed a last detailed survey.

Tuomas Vohlonen (1878–1939 was a famous Finnish inventor. A surveyor by trade, his patents cover a wide area of devices and activities including compasses, skis, surveying, engines and farming. His most important heritage is the company Suunto Oy which is still active producing compasses according to his patented method as well as dive computers, outdoor wristtop computers, and heartrate watches. In April 1933, after experimentation with various designs, Vohlonen applied for a patent from the Finnish National Board of Patents and Registration for a compact liquid-filled field compass, in which the magnetic needle and damping fluid were completely sealed into a unitary fused celluloid capsule. Volhonen was granted a patent on January 25th, 1935. Together with his wife Elli and nephew Kauko he founded Suunto Oy in 1936. Vohlonen incorporated his new liquid-filled capsule into a lightweight wrist-mounted design, the M-311, suitable for use by soldiers, surveyors, hikers, and others navigating whilst afoot. His march compass was adopted by the Suomen Maavoimat and was in widespread use throughout the Maavoimat by late 1938.

The leadership of the Winter Survey Team was to be Vohlonen’s last major accomplishment and one of which he was, justly, proud – in the summer of 1939 at the age of 61, shortly after his return from Kolari, Tuomas Vohlonen, surveyor, inventor and managing director of an emerging company whose efforts were now bearing fruit, died suddenly and unexpectedly. The most groundbreaking of Tuomas Vohlonen’s inventions was the method for manufacturing a liquid-damped march compass and it had been a proud moment for him when a militarised version had been adopted by the Suomen Maavoimat as the standard compass for its soldiers. (His company incidentally still exists and it continues to manufacture high quality watches and compasses – http://www.suuntowatches.com).

Meanwhile, contracts with construction and forestry companies were being signed, materials stockpiled and plans were drawn up to mobilize a large number of Suojeluskuntas Pioneeri units and to hire construction labourers, loggers and all the ancillary personnel necessary for such a large scale project. Equipment was assembled, first around various sites in Finland and then moved to Tornio, Kolrani and by ship to Lyngenfjord itself – with work planned to start from all three points simultaneously. Within the project, there were a number of sub-projects that were to kick-off at more or less the same time, with some variability for the weather. It was expected that wharf, warehouse and barracks construction in Lyngenfjord could start first, and the men and materials for this component of the project were dispatched by ship in late January 1939 - as soon as the necessary materials had been purchased and loaded and the workers assembled. Planning for the port was based on the projected needs of the Finnish military in the event of a war with the USSR and was based on estimates of “discharge capability.” The ability to export via the port was considered a secondary benefit in the initial stages, and later in the WW2 period, much additional work was undertaken to allow large volumes of exports to be shipped out, as well as military supplies shipped in.

buildw.jpg

The construction of the first wharf at Lyngenfjord progressed rapidly. This wharf was needed to permit the rapid offloading of construction materials and equipment – initial supplies were landed by lighters onto the beaches, such as they were….

usaelogistics2p72.jpg

Commercial Wharf construction underway: Summer of 1939. Wharf facilities were constructed rapidly, but the scale and size of the planned port facility meant that work was still underway as the Winter War broke out. In the event of a war, it was envisaged that military supplies would be arriving in crates or boxes, which would necessitate the use of shore cranes to speed upoffloading. In the event, shore cranes were not available at the start of the Winter War and cargo ships had to use their own cranes – although the situation was partially alleviated by the relocation of one of Finland’s two heavy-lift cargo ships to Lyngenfjord.

The port facility was designed for military usage initially, but commercial considerations were also kept in mind, and the facility was designed to handle 2,000 tons of cargo per day – handling four ships simultaneously at an estimated 500 tons per ship per day offloading capacity using ships derricks and wharf-based cranes. This would then need to be moved from the docks to warehousing facilities for loading onto available transport (rail or truck). A major advantage here was that with Finland being an export-based economy, and with most exports leaving via ship, a large amount of expertise in this area was available. Consequently, the needs were well-understood and planning was effective. A further major consideration at Lyngenfjord was the construction of storage and warehousing facilities as well as marshaling yard capacity for both trucks and, eventually, for the planned rail link. Three marshaling yards were built – the first for trucks with a capacity for an estimated 1,000 trucks, the second and third for railway wagons, with a capacity for 700 wagons in the first yard and 800 at the second.

fabimage09historiccrane.jpg

Warehouse facilities at Lyngenfjord later in WW2. American equipment is begining to arrive....

dhm2452.jpg

Two freight trains leaving the Lyngenfjord Marshaling Yards en route to Tornio, early 1941 – the rail link to Lyngenfjord was completed in September 1940 and freight trains began using the link within days. By 1943, a double track would be in place over the entire distance to Tornio, considerably speeding up transit times. Two Ilmavoimat VL Wihuri’s based from the Ilmavoimat’s Bardufoss Airfield fly low overhead.

lyngenfjordwihuri1.jpg

Ilmavoimat VL Wihuri’s heading down Lyngenfjord – December 1940. Following the German invasion of Norway in May 1940, Finland would seize control of the Finnmark to protect access to Lyngenfjord and go on to build up her military strength in the area, including construction of a large air base at Bardufoss.

The construction of the Lyngenfjord Highway started a little later, in March 1939. Large amounts of material and equipment had already been moved and stockpiled over the winter months and startup was immediate, taking place as soon as weather conditions permitted.

a25568.jpg

Early March 1939: Construction equipment being assembled in Turku prior to movement by Rail to Tornio where work would start in April. This was the largest engineering project of its kind undertaken in Finland and its success. The project would not have been possible without the 3,500 different vehicles assembled, including 1,750 heavy trucks, 500 bulldozers and tractors, 500 diggers, graders and rollers and 750 other assorted vehicles including buses and trucks to transport the workers to and from work sites.

As the weather conditions improved, equipment and men began working from Lyngenfjord, Kolrani and Tornio simultaneously. The Tornio-Kolrani section was perhaps the easiest – the work here was simply to upgrade the existing road to a dual-lane all-weather highway on the one hand and to lay a second railway line on the other, effectively double-tracking the line as far as Kolrani. This work was not trail-blazing, and standard rail and road construction techniques were used. Work progressed rapidly on this part of the project with multiple start points being used and large teams at work, covering the distance rapidly.

7b7e06dd1456dd4517b9084.jpg

Laying down railway track north of Tornio – Summer 1939

The winter Survey laid out the route in broad detail, mapped the path through the mountains and generally confirmed the viability of the existing road as a baseline from which to work. For the detailed work on the Lyngenfjord Highway project, much of the surveying during the project itself was accomplished by “Sight” Surveying - using the original survey as a guide to the general route and direction whilst accomplishing the immediate objective by climbing a tree or standing on a bulldozer, picking the next point in the distance and working toward it while at the same time attempting to avoid the numerous small swamps, rivers and small lakes, rock outcroppings and steep grades. Local guides were employed where needed to help the surveyors.

truck2c.jpg

The first priority was simply to survey the route and blaze an initial track over which trucks could move in men and materials to improve the route while also moving men and materials into place for work to start. Here, a truck ferrying building materials is bogged down in the mud ruts in the original “road” – and is being winched out using a cable

lyngenfjordhighway6.jpg

Surveyors setting out the route for the Highway. Generally, this followed the existing route……

page3cq.jpg

Once a route was surveyed, the work on the road starts in earnest. First, loggers would cut down the trees to clear a route and then the bulldozers would clear what was left, leaving a clear swath through the forest.

lyngenfjordhighway1.jpg

Whereever possible, heavy construction machinery was used to speed up the process – in this case a bulldozer and a large scraper….

alaskanhighwaybuilding.jpg

Working on the cleared route….

Behind the loggers felling the trees and the bulldozers clearing the route other teams built culverts or temporary bridges, dug ditches to keep the road surface relatively dry, put down base material and in soggy sections laid down a wooden bed consisting of several feet of trees. This "corduroy road" would then be covered with gravel and packed down, ensuring that supplies and fuel moved forward to the teams at the front. Finally, the largest teams would follow as close behind the bulldozers as possible, widening and straightening the road, eliminating some steep grades, and covering surfaces with more gravel, then packing this down. The initial result was a passable military road 18 to 24 feet wide, far below the standards required for a safe civilian highway but adequate for military trucks. Construction teams further to the rear – usually some 10 to 20 miles back - worked to widen the road to dual lane, build rest and refueling stops and build accommodation for the maintenance crews and shelters for their vehicles and equipment. The workers hacked, slugged and pushed their way through dense forest, hard rock, muddy bogs and mosquito-ridden swamps, working exhausting 12 to 16-hour days in harsh and often dangerous conditions.

hoge1.jpg

Building a Log Bridge: Speed was essential and timber was available – all the early bridges were built from logs, many were later replaced with steel “Bailey Bridge” style construction. The log bridges could be constructed rapidly from immediately available materials – this bridge took a mere three days to build. Teams all along the surveyed route built bridges as fast as possible while other work teams constructed the roads between the bridges

lyngenfjordhighway23.jpg

Building a more permanent bridge to replace an earlier log bridge. Numerous such bridges had been pre-fabricated and stockpiled prior to work on the highway beginning. They were moved into position as soon as the road had gotten to a point where they could be moved up and put into place.

craneshovel.jpg

Crane Shovel putting in a Culvert

Where sections of the Highway ran into soggy or swampy ground, this was overcome through the building of corduroy (or log) roads which provided a solid foundation over which gravel was laid. The sections laid down in this way formed a wooden bed consisting of several feet of logs over which a deep layer of gravel was laid and compressed. The resultant road was generally solid and where the logs were laid in wet, acidic, anaerobic soils such as peat they decayed very slowly. In constructing these roads it was important to select logs about ten inches in diameter and place them in several layers. As in the superstructure of a bridge, stringers, double layers of crossed logs, and siderail lashings had to be used. The guard rails had to be wired because nails could not be used. The cross logs had to be topped with a layer of sand - not dirt - or, when no sand was available, with cinders or gravel. Such thoroughly constructed corduroy roads could stand the strain of constant heavy traffic.

pa270084.jpg

And a corduroy “bridge” over a small trickle like this took a mere three hours for a small construction team…..

lyngenfjordhighway20.jpg

Early in the project, small sections of corduroy road were laid down wherever needed…

lyngenfjordhighway21.jpg

The material for the corduroy foundation was certainly easy to source….

lyngenfjordhighway11bez.jpg

Grading and leveling was done with whatever equipment was to hand… and there was a great deal of improvisation – something the Finnish logging and constructions workers excelled in ..

steamrollerr.jpg

And last of all, over everything came a thick layer of gravel which was packed down by rollers

lyngenfjordhighway19.jpg

The final result may not have been pretty, but together with the parallel Lyngenfjord Railway it would prove to be Finland’s lifeline for 6 long years…..

The hardest section of the road to build was that that ran through the mountains along the Norwegian-Finnish border. It was rugged terrain and while the route existed and was usable, it needed to be upgraded considerably to take a major Highway and then a Rail line. This section involved a considerable percentage of the overall 22,000 man work force and was completed in roughly the same timeframe - by late summer 1939.

1942ahopening1.jpg

Building the highway up the side of a small lake as the Norwegian border was neared

lyngenfjordhighway4.jpg

Forcing the route up into the mountains…..

wreck.jpg

The pace was rapid, risks were taken and accidents happened all the time. Vehicles and machinery were recovered wherever possible but speed was of the essence and if recovery would slow progress, the obstacles were simply pushed to one side and abandoned until later…..

rolloverx.jpg

And a truck that had rolled over….Wrecked and abandoned vehicles were a common sight on the sides of the road as it grew in length.

lyngenfjordhighway14.jpg

As were sunken vehicles at times…..

constructionoc.jpg

A building going up on the road – this building when finished would be used as accommodation for drivers in transit at a rest-point along the highway.

pf036653.jpg

December 1939: Wedge and wing plow widening the road. Maintenance was an ongoing task in summer and snow-ploughing in winter. It was down this highway in the depths of winter that many of the Volunteer units that fought in Finland would come….At the height of the Winter War, some 500 trucks per day travelled in each direction on the road with 2,000 trucks in use at any one time. Kolrani turned into a major cross-loading depot as trucks off loaded and transferred their freight to the rail system

Once completed, the Lyngenfjord Highway (and later also the “Arctic Road” to Petsamo) required a substantial number of people to maintain and run the route. The Lyngenfjord Highway by itself required some 3,000 staff to carry out traffic management during the Winter War. There were about 2,000 jobs related to loading and unloading, road maintenance employed about 4,000 people in total and other services around 1,000 - in other words, almost 10 000 people were needed in one way or another to run the Lyngenfjord Highway (and the “Arctic Road” to Petsamo, which was also managed by Oy Pohjolan Liikenne Ab, required similar numbers of personnel from late 1940 on). During the Winter War, almost 75% of these 10,000 were women – and a large number of the men were Swedish volunteers.

The building of the Highway was an epic undertaking, but its opening at the end of summer 1939 was not mentioned in the newspapers – largely for security reasons. Meanwhile, work on running the rail track through to Lyngenfjord continued at the same breakneck pace that had seen the Highway driven through. The Rail link itself took longer, only being completed towards the end of 1940.

At the same time as work on the Lyngenfjord Highway started, the State founded a transport company called Oy Pohjolan Liikenne Ab which would handle all cargo movement to and from Lyngenfjord (rail traffic to Narvik was handled by Finnish State Railways). At the same time as construction on the road started, an order for some 1,000 trucks was placed with both Sisu Construction Vehicles and with the Ford Helsinki Plant. Some 750 of these were standard heavy-duty militarized cargo trucks, but 250 were for an innovative and rugged 8 wheeled all-wheel drive military truck that could handle pretty much any type of conditions encountered on the Highway.

guy8x81930.jpg

The Sisu-designed and built 4-axle 8x8 all-wheel drive Military Truck. Designed to cope with swampy ground in summer and snow in winter, this had been designed in 1936 and trialed over 1937. The Maavoimat had already placed and order for 500 of these trucks in late 1937 – An order for a further 250 was placed by Oy Pohjolan Liikenne Ab in January 1939 for use on the Lyngenfjord Highway.

In addition, Oy Pohjolan Liikenne Ab also liased with private transport companies and the Maavoimat for the use of privately owned vehicles in the event of war. With the road completed in September 1939 and the basics of a port at Lygenfjord in place, the outbreak of the Winter War resulted in a further 1,000 privately owned trucks being contracted to work the route. Contract carriers used their trade organisations (among them the Lapland Road Hauliers' Association) to negotiate terms and fees with their employer. Negotiations were often necessary in connection with e.g. arrangements for loading and unloading, compensation for goods lost in transit, tariffs, road maintenance, insurance, and traffic safety.

At this point, we’ll leave the details of the actual operation of the Lyngenfjord Highway until we get to the Winter War itself. Suffice it to say that as a project, the Lyngenfjord Highway construction project brought together the experience and knowledge of a range of Finnish companies and industries, but the glue that held it all together was the experience in rapidly building logging roads under rugged conditions that had been developed within the Finnish Forestry Industry through the 1930’s….

Next Post…. The Development of Fire Watching and it’s military applications within Finland
 
Last edited:
I am amused by the fact that you seem to have captured a readership (myself included) that devotes itself to reading long, detailed expositions on Inter War Finnish economy and society!

I am greatly enjoying it all the same, but I can't quite tell if it is an elaborate and masteful troll; a strange but determined combined marketing campaign by the Finnish Tourism Authority, Ministry of Industry and the Canadian-New Zealand-Finland Friendship Society*; or very useful and interesting background information for the Main Act.

*If so, it sort of worked, as I visited to Finland on the back of this and another Finnish timeline
 
Top